1. Suppose \(\{X(t), t \geq 0\} \) is a martingale. Show that \(\{e^{\theta X(t)}, t \geq 0\} \) is a nonnegative sub-martingale \((\theta > 0)\). Recall that we used this result to find the concentration for the poisson process by applying Doob’s inequality.

2. Consider a SIER epidemic process as follows. Every infected (I) individual interacts with another individual chosen uniformly at random at rate \(\beta \). Population size is \(n \). When a susceptible (S) individual becomes exposed (E) to an infected individual, it takes an exponentially distributed amount of time with parameter \(\gamma \) to show the symptoms at which point he/she becomes infected. Each infected individual has an infectious period exponentially distributed with parameter \(\delta \) during which he/she can infect others after which he/she becomes removed (R). First describe the system using a continuous-time Markov chain by describing the transition rates between various states. Second, write a set of differential (mean-field) equations for the system. In what sense the differential equations provide a good approximation to the Markov process?

3. Show that under the small-world network model, with \(n \) nodes and for any \(\alpha > 0 \), the maximum degree is \(O(\log n) \) with high probability.